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Abstract

The time-constrained shortest path problem is an important generalization of the shortest path problem. Recently, a

model called traffic-light control model was introduced by Chen and Yang [Transport. Res. B 34 (2000) 241] to simulate

the operations of traffic-light control in a city. The constraints of the model consist of a repeated sequence of time

windows, and each window allows only certain routes to pass through a node. In this paper, we introduce a new kind of

network called on–off time-switch network in which an arc is associated with a sequence of windows with status ‘‘on’’ or

‘‘off’’ analogous to ‘‘go’’ or ‘‘wait’’. We show that both networks have the same mathematical structure in the sense that

a path in one network corresponds to a path in the other one. Since Chen and Yang have developed algorithms to find

the minimum total time path in the previous paper, we include one more criterion in this paper: weighted number of

stops. To solve this bi-criteria path problem, we transform the traffic-light network into the on–off time-switch network,

which allows us to take advantages of the special structure to design more efficient algorithms. By this transformation,

finding the bi-criteria shortest path in the traffic-light network can be done in time Oð#Wn3Þ, where n is the number of

nodes and #W is a given maximum number of weighted stops.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Studying network problems subject to time constraints is increasingly gaining popularity, especially in a

variety of transportation applications. Some examples include shortest path problem (Desrochers and

Soumis, 1988; Chen and Tang, 1997, 1998), traveling salesman problem (Baker, 1983; Dumas et al., 1995),

vehicle routing problem (Baker, 1982; Kolen et al., 1987; Balakrishnan, 1993; Russell, 1995; Bramel and
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Simchilevi, 1996), traffic network (Fu and Rilett, 1998), and pickup and delivery problem (Dumas et al.,

1991). Among them, shortest path problem and vehicle routing problem are probably the most widely

studied ones.

Basically, the shortest path problem is concerned with finding the path with minimum distance, time, or

cost from an origin to a destination through a connected network. It is a classical and important problem in

the area of combinatorial optimization because of its numerous applications. Readers are referred to Bodin
et al. (1982), Deo and Pang (1984), Ahuja et al. (1993) and Golden and Magnanti (1977) for more com-

prehensive discussions of these issues.

In the presence of time constraints, the shortest path problem needs to consider when a node in the

network can be visited in search of a solution. Time window has been a common form of time constraints

that requires that a node can be visited only in a specified time interval (Baker, 1982; Kolen et al., 1987;

Desrochers and Soumis, 1988; Balakrishnan, 1993; Russell, 1995; Bramel and Simchilevi, 1996). Two kinds

of time windows appear commonly. The first one is the hard time window where solution is infeasible if we

cannot visit the node during the window period (Kolen et al., 1987; Russell, 1995; Bramel and Simchilevi,
1996). The other one is the soft time window where a cost penalty is incurred if we visit the node outside its

time window (Balakrishnan, 1993). In addition, if the time windows degenerate into time points, which is a

discrete version of the time window constraint, we call it time schedule constraint (Chen and Tang, 1997,

1998, 2001). This kind of constraint assumes that each node has a list of pre-specified departure times and

requires that departure from a node can take place only at one of these departure times.

Although the time-constrained problems have been studied extensively, one member of this family re-

ceived surprisingly little attention and even seemed to have been ignored. That is, finding the shortest path

of a city with traffic-light control in a number of crossroads. Consider Fig. 1(a) that shows a sample
crossroad. Suppose the crossroad has a light control that is a repeated sequence of four different windows.

Fig. 1(b) (or (c)) indicates the allowable routes in the first (or the second) window. The third and fourth

windows in essence resemble the first and second ones but slightly differ in orientations: the former is

between north and south, while the latter is between east and west.

To model the problem in Fig. 1, one may consider the soft time window to be suitable since it specifies

the time interval to pass through the crossroad. However, we cannot apply the single soft time window

because it does not consider the orientations nor contain a repeated sequence of different time windows. To

solve this problem, Chen and Yang (2000) proposed a new kind of network, called traffic-light network, to
formulate a modern city subject to traffic-light control constraints and developed a polynomial algorithm

for finding the shortest path. In this paper, we will consider one more criterion that occurs frequently in

practice, namely, the number of stops in a path. To justify this new criterion, note that more stops often

introduce uncertainty and cause tour scheduling to be less manageable. Furthermore, in terms of trans-

portation alone, more stops are less cost-effective. Finally, excessive number of stops may make travelers

frustrated.

In this paper, we introduce a new kind of network, called on–off time-switch network, and show that both

networks have the same mathematical structure. That is, if a path appears in one network, there exists its
counterpart in the other one. Moreover, both paths have the same total time and the same number of stops.

Because of this property, an optimum path in the traffic-light network can be found by solving its coun-

terpart in the on–off time-switch network. The transformation allows us to develop the efficient algorithm

that is easier based on the on–off time-switch network. In consequence, our solution procedure contains

two major parts. First, we transform the original network into the corresponding on–off time-switch net-

work. Second, we solve the bi-criteria path problem in the on–off time-switch network.

This paper is organized as follows. In Section 2, we define the traffic-light network and the on–off time-

switch network. In Section 3, we propose a method for transforming a traffic-light network into an on–off
time-switch network. In Section 4, we study a bi-criteria shortest problem in an on–off time-switch network.

The criteria considered are the total time and the weighted number of stops. We use the weighted number of
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stops instead of number of stops as the second criterion to reflect the importance of the road. Finally,

Section 5 contains the conclusion, limitation of the paper and future research directions. We provide the
proofs of lemmas and theorems in Appendix A.

2. Definitions of networks

We let N ¼ ðV ;A; t; s; dÞ denote a traffic-light network, where V is the node set of crossroads, A is the arc

set of roads in the city, tðu; vÞ is the travel time from node u to node v, s is the source node and d is the

destination node. A path is said to be efficient if no other paths with the same or fewer number of stops but
a smaller total time exist in the network. Our goal is to find all efficient paths from node s to node d in N

where some nodes are subject to the traffic-light control. By the definition of the efficient path, we have at

most one efficient path for a given number of stops. Since the maximum number of stops in a path is limited

in practice, processing the set of efficient paths can be done comfortably. Therefore, after finding all the

efficient paths, we can select the best one that reflects our preferences. For example, we can assign different

weight to each criterion, and then choose the one with minimum weighted sum.

(c)

(a) (b)

Fig. 1. (a) A sample crossroad. (b) The allowable routes in the first window. (c) The allowable routes in the second window.
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Assume that V ¼ V1 [ V2 and fs; dg 2 V1, where V1 is the node set without window restriction and V2 is
the node set with window restriction. For notational purpose, let each node u 2 V2 have r time windows

wu;1;wu;2; . . . ;wu;r. Since these windows form a repeated sequence, we assume that wu;0 ¼ wu;r;wu;ðk�rÞþi ¼ wu;i

for any nonnegative integers k and i, and use du;i to specify the length of window wu;i. Further, we associate

the window wu;i with a set of node-pairs NPu;i. A node-pair hx; yi in NPu;i denotes the ith window of node u to

visit node y from node x, namely, NPu;i is the set of allowable routes in the ith time window of node u.
Consider Fig. 2 that is the network representation of Fig. 1(a). For node I, we attach four time windows

wI ;1;wI ;2;wI ;3 and wI;4. Window wI;1 has a set of node-pairs NPI ;1 ¼ fhN;Wi; hN;Ei; hS;Wi; hS;Ei; hW; Si;
hE;Nig, NPI ;2 of wI ;2 ¼ fhN;Wi; hN; Si; hS;Ni; hS;Ei; hW; Si; hE;Nig, NPI ;3 of wI ;3 ¼ fhW; Si; hW;Ni;
hE; Si; hE;Ni; hS;Ei; hN;Wig, and NPI ;4 of wI;4 ¼ fhW; Si; hW;Ei; hE;Wi; hE;Ni; hS;Ei; hN;Wig. Note that

the node-pair set NPI;1 (or NPI;2) contains all the routes in Fig. 1(b) (or Fig. 1(c)). As shown, the network

models the light control of a city. By expressing each route as an entering arc ðx; uÞ plus a leaving arc ðu; yÞ,
we can group all these allowable routes, denoted by hx; yi, together to form a node-pair set of the corre-

sponding time window. Therefore, the problem of how to find the quickest path to pass through a number
of traffic-light controls can be answered by solving the shortest path problem in the present network.

In contrast, we associate a repeated sequence of time windows to an arc rather than a node in an on–off

time-switch network. The windows have no orientations, which means we can leave for the next node if we

are in ‘‘on’’ windows. To denote the beginning time of the operation sequence, we use an offset in the time-

switch. Fig. 3 shows such an example. Suppose the length of ‘‘on’’ is 5 units of time, the length of ‘‘off’’ is 4,

and the offset is at time 1. Further suppose the operation sequence is ‘‘on’’ followed by ‘‘off’’, then again

followed by ‘‘on’’, and so on. If we reach the arc at 7, then the earliest leaving time from this node is 10. On

the contrary, if we reach the arc at 4, we can leave immediately.
Let N ¼ ðV ;A; t; TL; s; dÞ be an on–off time-switch network, where G ¼ ðV ;AÞ is a directed graph without

multiple arcs and self-loops, V and A are the sets of all the nodes and arcs in the network, tðu; vÞ is the travel
time of arc ðu; vÞ, s and d are the source and destination nodes. Each arc ðu; vÞ in the network is associated

Fig. 2. The network representation of Fig. 1(a).

Fig. 3. An example of on–off time-switch.
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with a time-list TLðu; vÞ ¼ ðo; t1; t2; . . . ; trÞ, where o is the offset and ti is the length of the ith time window.

The offset o allows different arcs to start at different times. Without loss of generality, we assume that

(1) r is an even number and

(2) ti is an ‘‘on’’ (or ‘‘off’’) window if i is an odd (or even) number.

From TLðu; vÞ, we can derive the sequence of window times as TSðu; vÞ ¼ ðtsgð1Þðu; vÞ; tswð1Þðu; vÞ; tsgð2Þðu; vÞ;
tswð2Þðu; vÞ; . . .Þ by using the following expression, where tsgðjÞðu; vÞ (or tswðjÞðu; vÞ) is the starting time of the

jth ‘‘on’’ (or ‘‘off’’) window:

T0 ¼ 0 and Ti ¼ Ti�1 þ ti ¼
Xi

j¼1
tj for i ¼ 1 to r;

tsgð1Þðu; vÞ ¼ o;

tsgðjÞðu; vÞ ¼ oþ bð2j� 2Þ=rc � Tr þ T2j�2�bð2j�2Þ=rc�r for j > 1;

tswðjÞðu; vÞ ¼ oþ bð2j� 1Þ=rc � Tr þ T2j�1�bð2j�1Þ=rc�r for jP 1:

For example, if TLðu; vÞ ¼ ð2; 5; 4; 1; 2Þ; then TSðu; vÞ ¼ ð2; 7; 11; 12; 14; 19; 23; 24; 26; . . .Þ, i.e., tsgð1Þðu; vÞ ¼
2; tswð1Þðu; vÞ ¼ 7, tsgð2Þðu; vÞ ¼ 11, tswð2Þðu; vÞ ¼ 12, and so on.

3. Transforming traffic-light networks into on–off time-switch networks

In this section, we will show that these two networks are equivalent in the sense that a path appearing in

one network always corresponds to a path in the other one with the same number of stops and total time.

Let N ¼ ðV1 [ V2;A; t; s; dÞ be a traffic-light network. For each node u 2 V2, an offset wou and r time windows

wu;1;wu;2; . . . ;wu;r of the lengths du;1; du;2; . . . ; du;r are attached. Recall a node-pair hx; yi in NPu;i denotes the
ith window of node u to reach node y from node x. To transform, we need to do the following:

1. Create the arcs and nodes in the on–off time-switch network. For paths in each network, a one-to-one
correspondence exists.

2. Attach a time-switch to each arc in the on–off time-switch network. The attachment ensures that the

total time and number of stops of a path in one network equal those in the other.

Creating the on–off time-switch network contains four steps (refer to Fig. 4).

1. For arc ðu; vÞ, where u 2 V1 and v 2 V1, create arc ðu; vÞ with the same travel time.

2. For arc ðu; vÞ, where u 2 V1 and v 2 V2, create arc (u; uv) with the same travel time.
3. For arc ðu; vÞ, where u 2 V2 and v 2 V1, create arc ðxu; vÞ with the same travel time for all nodes x having

arc ðx; uÞ.
4. For arc ðu; vÞ, where u 2 V2 and v 2 V2, create arc ðxu; uvÞ with the same travel time for all nodes x having

arc ðx; uÞ.

To see how this transformation works, consider Fig. 6(a), where fs; dg � V1; fA;B;C;Dg � V2 and the

number along each arc is the arc�s travel time. By the preceding transformation, we create Fig. 6(b) (we

temporarily ignore the time-switches associated with arcs). For every path in Fig. 6(a), say path
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(s;A;C;D; d), we can find a corresponding path ðs; sA; AC; CD; dÞ in Fig. 6(b). On the other hand, for every

path in Fig. 6(b), say ðs; sC; CB; BD; dÞ, we can also find a corresponding path (s;C;B;D; d) in Fig. 6(a).

Next, we will consider the problem of how to construct the time-switches for the arcs in the on–off time-

switch network. Consider Fig. 5 where we construct the time-switches for node C in V2. Suppose node C has
five different windows and two of them contain the node-pair hB;Di. If windows wC;1 and wC;2 contain this

pair, then arc ðBC; CDÞ can go in ½wC;1;wC;2� but must wait in ½wC;3;wC;4;wC;5�. Viewing ½wC;1;wC;2� as the first
window and ½wC;3;wC;4;wC;5� the second one, we can pass arc ðBC; CDÞ in the first but must wait in the

second. This situation is shown on the top of Fig. 5. In addition, we may have three other cases as follows:

1. Assume windows wC;2 and wC;3 contain hB;Di. This means that arc ðBC; CDÞ can go in ½wC;2;wC;3�, while
must wait in [wC;1] and ½wC;4;wC;5�. Recall that the number of windows must be even. To do that, we add

an ‘‘on’’ window of zero preceding [wC;1]. As a result, the arc ðBC; CDÞ has four windows, i.e., ½0�; ½wC;1�,
½wC;2;wC;3� and ½wC;4;wC;5�.

2. Assume windows wC;1 and wC;5 contain hB;Di. Similarly, we add an ‘‘off‘‘ window of zero following

[wC;5]. The windows are thus: ½wC;1�; ½wC;2;wC;3;wC;4�; ½wC;5� and ½0�.
3. Assume windows wC;2 and wC;5 contain hB;Di. In this case, ½wC;1�; ½wC;2�; ½wC;3;wC;4� and ½wC;5� happen to

be in reverse order of on–off. We add an ‘‘on’’ window of zero preceding ½wC;1� and an ‘‘off’’ window of

zero following ½wC;5�. Then, the windows are: ½0�; ½wC;1�; ½wC;2�; ½wC;3;wC;4�; ½wC;5� and ½0�.

Finally, if the node considered is in V1, we attach a time-switch ð0;1; 0Þ to all the arcs emanating from
the node.

Fig. 4. Create the on–off time-switch network.
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Applying the transformation to the network in Fig. 6(a), we obtain the arcs attached with time-switches

as shown in Fig. 6(b). For example, arc ðAC; CDÞ has a time list ð4; 2; 5Þ because hA;Di is allowed in window

wC;1 but prohibited in window wC;2. Note that ðsC; CDÞ has a time list ð4; 0; 2; 5; 0Þ because hs;Di is allowed
in window wC;2 but prohibited in window wC;1. As the second example, ðBD; dÞ has a time list ð2; 2; 6Þ
because hB; di is allowed in window wD;1 but prohibited in windows wD;2 and wD;3. On the contrary, ðCD; dÞ
has a time list ð2; 0; 2; 6; 0Þ because hC; di is prohibited in window wD;1 but allowed in windows wD;2 and
wD;3.

To see why the path in one network is equivalent to that in the other one, consider (s;A;C; d) in Fig. 6(a)

and ðs; sA; AC; dÞ in Fig. 6(b). Table 1 summarizes the traveling sequence of these paths and shows that both

paths have the same total time and the same number of stops.

The algorithm below constructs the time-switches for the arcs in the present network. For

ease of presentation, we number all the nodes in V1 [ V2 from 1 to n, where n ¼ jV1 [ V2j. Given wu;1;
wu;2; . . . ;wu;r and their NPu;1;NPu;2; . . . ;NPu;r, the following algorithm builds on–off time-switch for a node u

in V2.

Algorithm 1 (Build-time-switch ðuÞ)
1. For k ¼ 1 to r

For each node-pair hx; yi in NPu;k do
Insert wu;k into the end of the queue associated with arc ðxu; uyÞ.

2. For x ¼ 1 to n
For y ¼ 1 to n

Fig. 5. Create the on–off time-switch for a node in V2.

Y.-L. Chen, H.-H. Yang / European Journal of Operational Research 144 (2003) 565–580 571



Examine the queue attached with arc ðxu; uyÞ by the following:

2.1. If the queue is empty then delete arc ðxu; uyÞ and exit.

2.2. Examine the first element in the queue, say wu;b.

If wu;b 6¼ wu;1

then output an ‘‘on’’ window ½0�
output an ‘‘off’’ window ½wu;1; . . . ;wu;b�1�.

2.3. Find the continuous elements in the queue, say wu;b;wu;bþ1;wu;bþ2; . . . ;wu;bþz.

Output an ‘‘on’’ window ½wu;b;wu;bþ1;wu;bþ2; . . . ;wu;bþz�.
2.4. If the queue is empty and wu;bþz 6¼ wu;r

then output an ‘‘off’’ window ½wu;bþzþ1;wu;bþzþ2; . . . ;wu;r� and exit.

If the queue is empty and wu;bþz ¼ wu;r

then output an ‘‘off’’ window ½0� and exit.

Let the next element in the queue be wu;e (note that e 6¼ bþ zþ 1).

Fig. 6. (a) The original traffic-light network. (b) The constructed on–off time-switch network.
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Output an ‘‘off’’ window ½wu;bþzþ1;wu;bþzþ2;wu;bþzþ3; . . . ;wu;e�1�.
Let wu;b  wu;e ; go to step 2.3.

To analyze the time complexity of Algorithm 1, we assume that the maximum number of windows (i.e.,

r) in a single iteration of the repeated window sequence is a constant.

Lemma 1. The time complexity of Algorithm 1 is Oðn2Þ, where n is the number of nodes in the network.

In sum, we can transform a traffic-light network into the corresponding on–off time-switch network by

the following algorithm.

Algorithm 2 (Transformation)
1. For arc ðu; vÞ, where u 2 V1 and v 2 V1, create arc ðu; vÞ with the same travel time.

2. For arc ðu; vÞ, where u 2 V1 and v 2 V2, create arc ðu; uvÞ with the same travel time.

3. For arc ðu; vÞ, where u 2 V2 and v 2 V1, create arc ðxu; vÞ with the same travel time for all nodes x having

arc ðx; uÞ.
4. For arc ðu; vÞ, where u 2 V2 and v 2 V2, create arc ðxu;u vÞ with the same travel time for all nodes x having

arc ðx; uÞ.
5. For every node u in V1, attach ð0;1; 0Þ to all the arcs emanating from node u.
6. Use Algorithm 1 to attach windows to every node u in V2.

With Lemma 1, we can obtain the time complexity to transform and the size of the transformed network

as follows.

Lemma 2. The time of Algorithm 2 is Oðn3Þ, and the transformed network has Oðn2Þ nodes and Oðn3Þ arcs,
where n is the number of nodes in the network.

4. Finding bi-criteria shortest paths in a traffic-light network

The result of previous section shows that our problem reduces to finding a bi-criteria shortest path in an

on–off time-switch network. Since there are two objectives in our model, we may have a number of different
solutions depending on how we define our decision scenario. Hence, instead of defining what the optimal

path is, we choose to enumerate all efficient paths for the following two reasons:

(1) We know that the solution of a reasonable decision scenario must be in the efficient path set, since an

inefficient path is dominated by at least one efficient path.

Table 1

Traveling sequence of paths in two networks

Time Path

s ! A ! C ! d s ! sA ! AC ! d

0 Leave Leave

2 Arrive Arrive

4 Leave Leave

9 Arrive Arrive

11 Leave Leave

19 Arrive Arrive
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(2) The size of the efficient path set is often small. This implies that choosing the optimal path from the

efficient path set is not a great concern.

As described, an arc in an on–off time-switch network is analogous to transit an intersection of roads.

For example, the arc ðAC; dÞ denotes to transit from node A to node d via node C. In practice, the im-
portance of transition may vary from one to the other depending on whether the road is major or minor. To

reflect this factor, we attach each arc ðu; vÞ with a nonnegative integer, weightðu; vÞ, to denote its relative

importance. Because of this reflection, we will change to use the weighted number of stops as the second

criterion. For example, let (s;A;B;C; d) be a path and we stop on arcs ðA;BÞ and ðB;CÞ. If weightðA;BÞ ¼ 1

and weightðB;CÞ ¼ 2, the weighted number of stops of path (s;A;B;C; d) is 1þ 2 ¼ 3.

Let N ¼ ðV ;A; t; TL; s; dÞ be as defined above, and let #w denote the weighted number of stops. Our goal

is to find all efficient paths from node s to node d for 06#w6#W , where #W is a given constant. Let the

total time of a path to the node u denote the time to arrive at node u. Because we may wait for a while
before we start traveling the arc ðu; vÞ, we use the leaving time of arc ðu; vÞ to represent the earliest time to

travel. The following symbols will be used in the algorithm below.

P ðu;#wÞ: the path from node s to node u satisfying: (1) the arrival time of u is minimal; (2) it has #w
weighted stops.

reverseðu;#wÞ: the node that precedes node u in the path P ðu;#wÞ.
arrivalðu;#wÞ: the earliest time to reach node u from a path with #w weighted stops.

leavingðu; v;#wÞ: the earliest time to leave node u for v from a path with #w weighted stops.

When reaching node u at arrivalðu;#wÞ, we can leave for node v immediately if we are in ‘‘on’’ window,
or we must wait until the next ‘‘on’’ window. Let the stop be weighted by weightðu; vÞ. Thus, we can

compute the earliest leaving time of arc ðu; vÞ as follows:
Find a value of j such that tsgðj�1Þðu; vÞ6 arrivalðu;#wÞ < tswðjÞðu; vÞ.
If the above value of j can be found, then leavingðu; v;#wÞ ¼ arrivalðu;#wÞ.
Otherwise, find a value of j such that tswðj�1Þðu; vÞ6 arrivalðu;#wÞ < tsgðjÞðu; vÞ.
Then, set leavingðu; v;#wþ weightðu; vÞÞ ¼ tsgðjÞðu; vÞ.
On the basis of the label-setting algorithm (Dijkstra, 1959), we present the following algorithm to find all

the efficient paths from node s to node d. We refer to it as multiple labeling because a node can be associated
with as many as #W labels. In the simple shortest path problem, a path with a larger value of label (i.e.,

time) is discarded. However, to solve our problem, a label cannot be discarded simply based on the value

of time, but because it is less efficient.

Algorithm 3 (Multiple labeling)
1. Set arrivalðs; 0Þ ¼ 0.

Create a table T with jN j rows and #W columns, where entry T ði; kÞ is for node i with k weighted stops.

Let T ðs; 0Þ ¼ ðon; 0Þ and all other entries of T as (on,1), where the first element denotes the status and
the second is the arrival time.

2.

2.1. If each entry in T either has the status ‘‘off’’ or has the time 1 then go to step 3.

2.2. Among all ‘‘on’’ entries in T, choose the one with minimum arrival time.

Let it be T ðu;#wÞ with the value (on, arrivalðu;#wÞ).
Set T ðu;#wÞ ¼ ðoff ; arrivalðu;#wÞÞ.
Delete all entries T ðu; kÞ from T where k > #w and statuses as ‘‘on’’.

2.3. For each node v adjacent to u,
find a value of j such that tsgðj�1Þðu; vÞ6 arrivalðu;#wÞ < tswðjÞðu; vÞ.
If the preceding value of j can be found,

then arrivalðv;#wÞ ¼ minfarrivalðu;#wÞ þ tðu; vÞ; arrivalðv;#wÞg,
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If the status of T ðv;#wÞ is ‘‘on’’ and arrivalðv;#wÞ becomes smaller

then set T ðv;#wÞ ¼ ðon; arrivalðv;#wÞÞ and reverseðv;#wÞ ¼ ðu;#wÞ.
Otherwise, find a value of j such that tswðj�1Þðu; vÞ6 arrivalðu;#wÞ < tsgðjÞðu; vÞ.

Then, let #r ¼ #wþ weightðu; vÞ,
arrivalðv;#rÞ ¼ minftsgðjÞðu; vÞ þ tðu; vÞ; arrivalðv;#rÞg.
If T ðv;#rÞ is ‘‘on’’ and arrivalðv;#rÞ becomes smaller,

then set T ðv;#rÞ ¼ ðon; arrivalðv;#rÞÞ; reverseðv;#rÞ ¼ ðu;#wÞ.
2.4. Go to step 2.1.

3. For #w from 0 to #W do

3.1. Find the optimal path P ðd;#wÞ by traversing backward through reverseðd;#wÞ.
3.2. Set the total time of path P ðd;#wÞ to be arrivalðd;#wÞ.

4. Stop.

Example 1. Fig. 7(a) shows a network N, where the numbers inside the brackets are the travel times and the

numbers inside the parentheses are the time-switches. In Fig. 7(a), assume that weightðsA; ACÞ ¼
weightðAC; CDÞ ¼ weightðAC; CBÞ ¼ 2, and 1 otherwise. Given the data, we can derive the on–off time se-

quences of all of the nodes as follows:

TSðs; sAÞ ¼ TSðs; sCÞ ¼ TSðs; sBÞ ¼ ð0;1Þ;

TSðsA; dÞ ¼ ð2; 4; 7; 9; 12; 14; . . .Þ;

TSðsA; ACÞ ¼ ð2; 2; 4; 7; 7; 7; 9; 12; . . .Þ;

TSðCA; dÞ ¼ TSðCA; CDÞ ¼ TSðCA; CBÞ ¼ ð4; 6; 11; 13; 18; 20; . . .Þ;

TSðsC; dÞ ¼ TSðsC; CDÞ ¼ TSðsC; CBÞ ¼ ð4; 4; 6; 11; 11; 11; 13; 18; . . .Þ;

TSðsB; BDÞ ¼ ð1; 5; 5; 9; 9; 13; . . .Þ;

TSðCB; BDÞ ¼ ð1; 1; 2; 5; 5; 5; 6; 9; . . .Þ;

TSðBD; dÞ ¼ ð2; 4; 10; 12; 18; 20; . . .Þ;

TSðCD; dÞ ¼ ð2; 2; 4; 10; 10; 10; 12; 18; . . .Þ:

Suppose we want to find all the efficient paths subject to #W ¼ 2. Fig. 7(b) shows the result of the first

iteration of the algorithm, and Fig. 7(c)–(e) give the results of the remaining ones. For clarity, only the

labels denoting arrival times of #w ¼ 0, 1 and 2 for each node are shown. In the beginning, labels of all

nodes are1;1;1, except the node s with 0,1,1. Recall that an entry can be deleted or set as ‘‘off’’. If it

is deleted (i.e., dominated), we will no longer consider it in the later iteration. On the other hand, we set the

entry to ‘‘off’’ if it is selected. Since the status of an undeleted label can be ‘‘on’’ or ‘‘off’’, we use an un-

derline to show the status of ‘‘off’’. In comparison, the label with a double strikeout line is a deleted one.
Each iteration will select the minimum arrival time label from all the entries with status of ‘‘on’’. We

summarize the entries selected and deleted in each iteration in Table 2. Finally, all undeleted labels in Fig.

7(e) have either statuses as ‘‘off’’ or arrival times as 1, so we stop the algorithm.

According to the algorithm, we find two efficient paths: P ðd; 0Þ ¼ ðs; sA; dÞ with total time 13, and

P ðd; 1Þ ¼ ðs; sC; CD; dÞ with total time 11. It is interesting to observe how the trade-off between the travel

time and number of stops reveals. Recall our model has reflected the relative importance of the road. From

the result, path P ðd; 0Þ takes more time than path P ðd; 1Þ does, but has fewer weighted number of stops.
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From a practical viewpoint, it is not a surprising result because a road may constitute part of a detour that
takes more time but encounters fewer number of traffic signals. As we stated at the beginning of this section,

the solution depends on the decision scenario so that we can select the one by our preferences. In this case,

we can either travel faster or experience fewer numbers of stops, but not both. Apparently, the trade-off
explains why we find the efficient paths rather than optimal ones.

To prove Algorithm 3, we need to prove two things: (1) the selected entry T ðu;#wÞ in each iteration of

step 2 is efficient, i.e., no other entry in T having arrivalðu; kÞ6 arrivalðu;#wÞ where k < #w, and (2) if

arrivalðu;#wÞ is efficient, the algorithm will finally set T ðu;#wÞ ¼ ðoff ; arrivalðu;#wÞÞ in some iteration of

step 2. These two elements are presented in the following lemmas.

(a) (b)

(c) (d)

(e)

Fig. 7. (a) The original on–off time-switch network N. (b) The first iteration of the multiple labeling algorithm. (c) The second and

third iterations. (d) The fouth and the fifth iterations. (e) From the sixth iteration to the final iteration.
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Lemma 3. The selected entry T ðu;#wÞ in step 2.2 is efficient.

Lemma 4. If arrivalðu;#wÞ is efficient, then the algorithm will finally set T ðu;#wÞ ¼ ðoff ; arrivalðu;#wÞÞ in
some iteration of step 2.

Combining Lemmas 3 and 4, Algorithm 3 is correct. To analyze its time complexity, we need the fol-

lowing lemma.

Lemma 5. Given arrivalðu;#wÞ þ tðu; vÞ in step 2.3, arrivalðv;#wÞ or arrivalðv;#wþ weightðu; vÞÞ can be
determined in time Oðlog rÞ, where r is the number of windows in an iteration of the repeated window sequence
associated with node v.

With Lemma 5, we obtain the time complexity of Algorithm 3.

Lemma 6. The time complexity of Algorithm 3 is Oð#W jAj log r þ #W jV j log jV jÞ, where jAj and jV j are the
numbers of arcs and nodes in the constructed on–off time-switch network, respectively.

Finally, by Lemma 6, we derive the following theorem.

Theorem 1. The bi-criteria shortest path problem in a traffic-light network can be solved in time Oð#Wn3Þ,
where n is the number of nodes in the original traffic-light network.

5. Conclusions

This paper studies minimizing total travel time and weighted number of stops in a network subject to the

traffic-light constraints that simulate the operations of a practical light control. To solve this bi-criteria

problem, we first transform the traffic-light network into a counterpart network named on–off time-switch

network and show that a shortest path in one network is equivalent to that in the other. In addition to

maintaining the same mathematical structure, the on–off time-switch network is a simpler platform to

develop algorithms for solving problems. As more transportation problems are studied, we hope the on–off

time-switch network may provide a gateway for developing efficient algorithms. The second contribution is
that polynomial algorithms are developed to find such paths that minimize total travel time and weighted

number of stops.

Table 2

The execution of Algorithm 3

Iteration no. T ðu;#wÞ selected arrivalðu;#wÞ Entries deleted

1 T ðs; 0Þ 0 T ðs; 1Þ, T ðs; 2Þ
2 T ðsA; 0Þ 2 T ðsA; 1Þ, T ðsA; 2Þ
3 T ðsC; 0Þ 4 T ðsC; 1Þ, T ðsC; 2Þ
4 T ðsB; 0Þ 5 T ðsB; 1Þ, T ðsB; 2Þ
5 T ðCD; 1Þ 7 T ðCD; 2Þ
6 T ðBD; 0Þ 8 T ðBD; 1Þ, T ðBD; 2Þ
7 T ðAC; 2Þ 9 –

8 T ðCB; 1Þ 11 T ðCB; 2Þ
9 T ðd; 1Þ 11 T ðd; 2Þ
10 T ðd; 0Þ 13 –
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The major limitation of the paper is that the proposed algorithm does not consider limited capacity

during green nor queuing effects at the stop-line. Our model implies that all the waiting vehicles can im-

mediately start regardless of the number of queued vehicles. In the real-world problems, the number of

vehicles able to pass the signal during green depends on the capacity. This limitation underestimates delays

that may be significant with traffic demand approaching capacity and in over-saturated conditions.

Finally, we mention some possible extensions of the paper. In addition to bi-criteria, more criteria may
be included. For example, since the total time of a path is its traveling time plus waiting time, a natural

extension is to consider the problem subject to a combination of goals such as the total time, the traveling

time, the waiting time and the number of stops. Another possible extension is to consider the vehicle

routing problem in a traffic-light network. As an example, we may assume that some nodes are required to

be served, some node is the depot and a vehicle route should complete within a given threshold. Under the

circumstance, the problem is to dispatch the minimum number of vehicles with a given capacity to complete

the service in a traffic-light network.
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Appendix A

Proof of Lemma 1. Step 1 iterates r times. In each iteration, every node-pair hx; yi in NPu;k is inserted into

the queue. Thus, each iteration has at most Oðn2Þ insertions, and the total time for step 1 is Oðrn2Þ ¼ Oðn2Þ.
Step 2 examines all Oðn2Þ queues. Since the number of ‘‘on’’ windows in the queue plus the number of ‘‘off’’

windows not in the queue is r, the total time for processing the queue is OðrÞ. Therefore, the total time of

step 2 is Oðrn2Þ ¼ Oðn2Þ. �

Proof of Lemma 2. Since we create n� 1 nodes for each node in V2, the total number of nodes in the time-
switch network is Oðn2Þ. For every arc ðu; vÞ in the traffic-light network, we create one arc in steps 1 and 2

but create at most n arcs in steps 3 and 4. Therefore, the maximum number of arcs in time-

switch network is bounded from above by Oðn3Þ. In step 6, we execute one time of Algorithm 1 for every

node in V2. By Lemma 1, the time of step 6 requires Oðn3Þ. Taken together, the lemma is proved. �

Proof of Lemma 3. By definition, if T ðu;#wÞ is not efficient, then there exists an entry T ðu; kÞ satisfying
k < #w and arrivalðu; kÞ6 arrivalðu;#wÞ. Since the algorithm uses an approach similar to that of Dijkstra�s
shortest path algorithm (Dijkstra, 1959) to select the next entry, the arrival times of the selected entries in
step 2 are output in nondecreasing order. Therefore, entry T ðu; kÞ must be selected and output before

T ðu;#wÞ. In this case, we would have deleted T ðu;#wÞ. This contradiction shows that no other entry in T
satisfying arrivalðu; kÞ6 arrivalðu;#wÞ where k < #w. �

Proof of Lemma 4. If arrivalðu;#wÞ is efficient, then there exists an efficient path from s to u with #w
weighted stops. Besides, for every intermediate node x, the subpath from s to node x must also be efficient.

Otherwise, we can replace the subpath from s to x by an efficient one, and the resulting path will be at least

as good as the original one. �

We now use induction to prove that every efficient label will finally be set in some iteration of step 2. At

the start, we set T ðs; 0Þ ¼ ðoff ; arrivalðs; 0ÞÞ. Assume this is true for the remaining iterations before we select
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arrivalðu;#wÞ. Let x be the node preceding node u in the efficient path from s to u with #w weighted stops.

Therefore, the label of x is either T ðx;#w� weightðx; uÞÞ or T ðx;#wÞ. Without loss of generality, assume it is

T ðx;#w� weightðx; uÞÞ. When we process the label T ðx;#w� weightðx; uÞÞ, the entry T ðu;#wÞ must exist

and have the status as ‘‘on’’. If T ðu;#wÞ has been deleted, it means in some earlier iteration of step 2 we had

selected another entry T ðu; kÞ, where k < #w, with a smaller or the same total time as arrivalðx;#w�
weightðx; uÞÞ and therefore arrivalðu;#wÞ is not efficient. This contradiction indicates that entry T ðu;#wÞ
must exist. Besides, T ðu;#wÞ must have status ‘‘on’’. Otherwise, it means arrivalðu;#wÞ has a smaller or the

same total time as arrivalðx;#w� weightðx; uÞÞ, because we process the labels in nondecreasing order of

arrival times. This is also a contradiction. Therefore, we will set the label of u as T ðu;#wÞ ¼ ðon; arrivalðu;
#wÞÞ when we select and process the label T ðx;#w� weightðx; uÞÞ.

After that, we will select T ðu;#wÞ in step 2.2 of some later iteration. At this point, the label T ðu;#wÞ
must remain the same as that we set in the iteration for T ðx;#w� weightðx; uÞÞ. Otherwise, there is another

path that is more efficient than the efficient path, and this is a contradiction. Therefore, this proves that we

will finally set T ðu;#wÞ as (off, arrivalðu;#wÞ) in step 2.2 and the arrival time is correct.

Proof of Lemma 5. Let T ¼ arrivalðu;#wÞ þ tðu; vÞ. Suppose Ti ¼ Ti�1 þ ti for i ¼ 1 to r. The most time-

consuming task is to find a j such that tsgðj�1Þðu; vÞ6 T < tswðjÞðu; vÞ or tswðj�1Þðu; vÞ6 T < tsgðjÞðu; vÞ. This can
be done by the following procedure:

1. Set T 0 ¼ ðT � oÞ mod Tr. Set r0 ¼ bðT � oÞ=Trc.
2. Use binary search to locate where the location of T 0 is in the sequence of ordered points T0; T1; T2; . . . ; Tr.

Assume that the location is T2i�2 6 T 0 < T2i�1.
3. Set j ¼ ðr=2Þ � r0 þ i.

Obviously, the procedure above can be done in time Oðlog rÞ because of the binary search. Thus, the lemma

is proved. However, this time complexity does not include the time to compute Ti ¼ Ti�1 þ ti for i ¼ 1 to r.
Fortunately, this computation is done once for each node, and hence the total time for computing Ti in
the whole algorithm is OðjV jrÞ, without affecting the final complexity of the algorithm. �

Proof of Lemma 6. Suppose we use Fibonacci heap to store all the entries T ðv;#wÞ of T satisfying
T ðv;#wÞ ¼ ðon; valueÞ, where value 6¼ 1. Note that, the advantage of using Fibonacci heap is that in-

sertion, decrease-value and find-minimum operations can all be done in Oð1Þ amortized time, and delete-

minimum operation in amortized time Oðlog hÞ, where h is the number of elements in the heap (Fredman

and Tarjan, 1987). Thus, the delete-minimum operation can be done in time Oðlogð#W jV jÞÞ ¼ Oðlog jV jÞ,
since the heap stores at most #W jV j elements.

Note that step 2.2 of Algorithm 3 iterates at most #W jV j times, because each iteration sets one entry to

be ‘‘off’’ and there are #W jV j entries in the table. Thus, the find-minimum operation of step 2.2 can be done

in time Oð#W jV jÞ. To set T ðu;#wÞ to ‘‘off’’ in step 2.2, the operation needs to delete the minimum element
from the heap. Therefore, the whole algorithm spends time Oð#W jV j log jV jÞ for this operation.

In addition, step 2.2 needs to delete all entries T ðu; kÞ for k > #w. To implement this operation, two

things should be done: (1) we must remove all these entries from the table, and (2) if some of them are

already in the heap then we need to delete them from the heap. Part (1) needs time at most Oð#W jV jÞ
because there are #W jV j entries in the table. Note that, part (2) can be done by a decrease-value operation

followed by another delete-minimum operation. Therefore, each operation of part (2) can be finished in

time Oðlog jV jÞ, and hence the total time for part (2) is Oð#W jV j log jV jÞ. Putting together, we observe that

step 2.2 can be done in time Oð#W jV j log jV jÞ.
Concerning 2.3, note that we examine every arc at most #W times. For each examination of arc ðu; vÞ in

step 2.3, we need to determine the value of arrivalðv;#wÞ or arrivalðv;#wþ weightðu; vÞÞ, and then decrease
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the value of the corresponding entry in the heap. The former can be done in time Oðlog rÞ by Lemma 5, and

the latter can be done in time Oð1Þ. Therefore, the total time required for step 2.3 is Oð#W jAjðlog rÞÞ.
Combining the times for steps 2.2 and 2.3 together, we have the total time complexity as Oð#W jAj log rþ
#W jV j log jV jÞ. �

Proof of Theorem 1. Lemma 2 shows the transformed on–off time-switch network has Oðn2Þ nodes and
Oðn3Þ arcs. Applying Lemmas 2–6 and assuming r is a constant, we have the total time Oð#Wn3Þ. �
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